
Git : Git is free and open source distributed version control system.

Git purpose is to keep track of projects and files as they change over time with manipulations

happening from a different user.

Some commonly using commands in git are as following.

Commands Description
$git init Initialize git in local folder

$git add Add a file to the staging area

$git status Check the status

$git commit Add the staged file

$git log lists the commits made in that repository.

$git diff What you change in file

$git rm –f <file_name> Remove files
$git checkout --file to discard last changes in current commit

$git commit –amend –m “msg”

$ git reset (SAWID) head (file)

To move previous commit and delete all

$git rm –cached file To delete staged file
$git commit –a “msg” Add and commit at same time

$git branch To check current branch
$git branch <branch_name> To create new branch

$git checkout <branch_name> To checkout this branch
$git checkout –b <branch_name> To crate and checkout also at same time

$git branch -m oldname new name To rename branch name

$git branch –d branchname To delete branch
$git merge branchname To merge two branches

$git stash save stash_name To create a new stash
$git stash apply stash@{number of stash} To apply stash

$git tag ticket_name saw1 To give name to saw1

$git clone repository_id To download project from github

Basic commands:

Git init: When you run git init in a new or existing directory, Git creates the .git directory, which is

where almost everything that Git stores and manipulates is located.

Git add:- The git add command adds a change in the working directory to the staging area.

Git status is mostly used command in git ,gives status of tracked and untracked changes in your

local repository.

Git add.

• Git add -A :- To add all.

• $git add . To add new and modified but not deleted.

• $git add -u To add modified and deleted but not new files/directories

Git log –oneline Prints log of past commits in one line.

Git Log Prints log of past commits

• Git log contains

i. Git hash(SHA)

ii. Git author meta data

i. Date and time of commit

ii. Message

Branching & Merging

Git Branch List branches (the asterisk denotes the current branch)

 Git branch branch_name Create a new branch

Git checkout branch_name Switch to a branch.

Git add filename Add a file to the staging area

Gir commit –m “ message” Add a file to the staging area

Git merge branchname Merge a branch into the active branch

Git diff shows the changes you have done in your existing file (compare different versions of your

files)

Git rm –cached –f filename Remove a file (or folder)

Git reset

git reset --soft <commit id>

git reset --mixed <commit id>

• The difference between --mixed and --soft is whether or not your index is also modified.

So, if we're on branch master with this series of commits: - A - B - C (master) • HEADpoints to C

and the index matches C. • When we run git reset --soft B, master (and thus HEAD) now points to

B, but the index still has the changes from C; git status will show them as staged. So if we run git

commit at this point, we'll get a new commit with the same changes as C. •

• Okay, so starting from here again: • - A - B - C (master) • Now let's do git reset --mixed B.

(Note: --mixed is the default option). Once again, master and HEAD point to B, but this time the

index is also modified to match B. If we run git commit at this point, nothing will happen since the

index matches HEAD. We still have the changes in the working directory, but since they're not in

the index, git status shows them as unstaged. To commit them, you would git add and then commit

as usual. • __ • And finally, --hard is the same as -

-mixed (it changes your HEAD and index), except that --hard also modifies your working directory.

If we're at C and run git reset --hard B, then the changes added in C, as well as any uncommitted

changes you have, will be removed, and the files in your working copy will match commit B. Since

you can permanently lose changes this way, you should always run git status before doing a hard

reset to make sure your working directory is clean or that you're okay with losing your

uncommitted changes.

Reset • git reset --hard <commit id> resets the HEAD to any commit mentioned in command. And

throws away all your changes which is made after the commit corresponding to the commit id.

NOTE:-

• Git doesn't upload a empty file or folder.

• .gitignore file is a text file that tells Git which files or folders to ignore in a project. Here you

can upload empty folder also .

• Conflict: A conflict arises when two separate branches have made edits to the same line in

a file, or when a file has been deleted in one branch but edited in the other.

This is the example of Conflict. Mainly this error only solved by human intelligence.

The commonly using tools for handling the conflict are as following.

1. Vimdiff

2. Tortoise

3. Meld

Git "fetch" Downloads commits, objects and refs from another repository.

Fetch downloads only new data from a remote repository.

Stash : in git stash is like storage area , which hold our new changes in file .Using this we can move

in other branch .

And can also use that stash in other branch file.

$git stash save “stash name” command is use to create a stash.

$git stash list command is use to check list of stash .

$git stash show stash@{number of stash} command is use to check where is stash.

$git stash show -p stash@{number of stash} command is use to what contains stash .

$git stash apply stash@{number of stash} command is use to copy and paste the stash in the file .

$git stash pop stash@{number of stash} command is use to cut and paste the stash in file .Here

stash is deleted automatically.

Download your project from the github .

$Git clone projectlink

__

Github Commands :

✓ Git init

✓ Git remote add origin <URL>

✓ Git push -u origin master

✓ Git pull origin master (will fetch all the changes from the remote’s master and

merge it into local .

Some alternatives to Github.

• Bitbucket.

• SourceForge.

• GitLab.

• Kiln.

• Codeplex.

• Beanstalk.

FAQ:

• How delete branch in git ?

$git branch –d <branch_name>

• How rename branch ?

 $git branch –m oldname newname

• What is SHA ?

 SHA is a 40 character checksum data generated by SHA (Secure Hash Algorithm)

algorithm. It is unique for all commits.

References:

✓ https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

✓ https://www.javatpoint.com/git-log

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://www.javatpoint.com/git-log

	Branching & Merging

